Üben
Mathe Erklärt
🚀 Hausaufgaben Held
Anmelden
Kostenlos Registrieren

Brüche auf 100 erweitern

Stefan Vickers·09.05.2023

Einen Bruch auf einen bestimmten Nenner, in diesem Falle 100, zu erweitern, ist insbesondere beim Vergleichen sowie Addieren und Subtrahieren von Brüchen nützlich. Diese Aufgabe lässt sich lösen, indem wir die Erweiterungszahl berechnen, die sich aus der Division des vorherigen Nenners mit dem zu erweiternden Nenners ergibt. Solange diese Division ohne Rest durchgeführt werden kann, kann der Bruch auch auf den gewünschten Nenner erweitert werden; andernfalls ist die Erweiterung so nicht möglich.

Der Nenner 100 nimmt zudem eine besondere Rolle ein, da sich ein Bruch mit Nenner 100 auch als Prozent schreiben lässt, so gilt a100=a%\frac{a}{100} = a\%.

Folgende Tabelle listet einige Beispiele auf, in denen ein Bruch so erweitert wird, so dass dieser anschließend den Nenner 100 hat:

Bruch Erweiterungszahl Erweiterter Bruch mit Nenner 100
12\frac{1}{2}100:2=50100:2 = 50150250=50100\frac{1\cdot 50}{2\cdot 50} = \frac{50}{100}
325\frac{3}{25}100:25=4100:25 = 434254=12100\frac{3\cdot 4}{25\cdot 4} = \frac{12}{100}
114\frac{11}{4}100:4=25100:4 = 251125425=275100\frac{11\cdot 25}{4\cdot 25} = \frac{275}{100}
850\frac{8}{50}100:50=2100:50 = 282502=16100\frac{8\cdot 2}{50\cdot 2} = \frac{16}{100}
110\frac{1}{10}100:10=10100:10 = 101101010=10100\frac{1\cdot 10}{10\cdot 10} = \frac{10}{100}
75\frac{7}{5}100:5=20100:5 = 20720520=140100\frac{7\cdot 20}{5\cdot 20} = \frac{140}{100}
34123\frac{4}{12}100:12=8R4100:12 = 8R4kann nicht auf 100 erweitert werden

Mehr zu natürlichen Zahlen

Du suchst detailierte Informationen, wie zum Beispiel alle Teiler oder die Vielfachenmenge, zu einer bestimmten natürlichen Zahl? Dann wirst du hier fündig.